VERNEHigh-density hydrogen for
heavy-duty transportation

David Jaramillo CTO & Co-Founder November 21, 2023

- CcH₂ and Verne intro
- Usable density comparisons
- Verne progress and conclusion

- CcH₂ and Verne intro
- Usable density comparisons
- Verne progress and conclusion

To enable broader adoption by longhaul trucking, a higher-density hydrogen system is required

Compressed hydrogen covers one narrow space of the hydrogen phase diagram

Liquid hydrogen enables higher densities than 700 bar

Cryo-compressed hydrogen enables the highest density solution with monophasic operations

1. Higher than LH₂ density

2. Simplified operations

900 bar 700 bar 500 bar 350 bar

CcH₂ is a cold gas, enabling monophasic refueling and onboard operations

Minimized "boil off" or venting •

Verne develops cryo-compressed hydrogen storage and refueling solutions

Impact: maximize heavy-duty truck performance

Current hydrogen 700 bar compressed

6 tanks 450 mi

Verne Configuration 1 Long-range

Verne Configuration 2 Ultra-light

4 tanks

ERNE

850+ mi

Similar volume

2 tanks 450 mi 2,000 lbs lighter

Double Profit Margins

VERNE Notes: Assumes 700 bar BOC weight of 3,300 lb; Verne BOC stores 121 kg of usable H₂; Verne frame-mounted system is 1,300 lb

All rights with Verne, concerning reproduction, editing, and distribution

- CcH₂ and Verne intro
- Usable density comparisons
- Verne progress and conclusion

Comparative truck model for CcH₂, LH₂, and sLH₂

Goal	Establish an approach with clear inputs, that enables direct comparisons for the metrics that matter, system usable densiti	
Outcome	Help truck fleets and stakeholders make informed decisions	

Comparative truck model for CcH₂, LH₂, and sLH₂

Goal	Establish an approach with clear inputs, that enables direct comparisons for the metrics that matter, system usable densities
Outcome	Help truck fleets and stakeholders make informed decisions

Example of low age	umptions made for	comparative model
Example of key ass	umptions made for	comparative model
⊥ √	L	▲

Storage system properties	Driving profile	Heat flux	Hydrogen extraction
 560 L storage volume per tank 	 Refueling in the AM and drive until empty (6 bar) 45-minute break every 4.5 hours Monday – Friday with refueling Monday AM 	• Assumes 2 W/m ²	 7 miles per kg of H₂ and 55 mph 7.86 kg/hr

LH_2 at 6 bar shows usable density of 82% or 45 g/L

LH_2 at 6 bar shows usable density of 82% or 45 g/L

sLH₂ at 6 bar shows usable density of 83% or 49 g/L

sLH₂ at 6 bar shows usable density of 83% or 49 g/L

CcH₂ shows usable density of 93% or 68 g/L

CcH₂ shows usable density of 93% or 68 g/L

CcH₂ exhibits the highest H₂ usable densities

Max density and usable density comparison

- sLH₂ systems exhibit 30% greater usable density relative to 700 bar
- CcH₂ exhibits 80% higher usable density relative to 700 bar
- CcH₂ exhibits 40% higher usable densities relative to sLH₂

Notes: For refueling, assumes 6 kJ/kgK for CcH₂ and 60% isentropic efficiency for LH₂ systems. In-tank heating is assumed for cryogenic solutions. Usable capacity % based on analysis as shown before. Max fill density assumes 6 bar and 28 K (59 g/L) with 6% ullage.

These high H₂ densities enable highest system volumetric usable densities

Given an external volume of 1,000L: Remaining volume available for H₂ storage **Given an external volume of 1,000L:** System volumetric usable density

• CcH₂ has lower storage volume available but, due to much higher usable densities, the overall system volumetric density is highest for CcH₂

VERNE Notes: Some BOP considered. A helpful metric is volumetric efficiency (storage volume/outer volume). LH₂ and sLH₂ volume based on various inputs, including SAG White Paper, 2022.

And unlocks highest system gravimetric usable density

Given an external volume of 1,000L: Weight of tank without H₂

Given an external volume of 1,000L: System gravimetric usable density

• CcH₂ tank system without H₂ is heavier but, due to much higher usable densities, the overall system gravimetric density is highest for CcH₂

VERNE Notes: BOP considered, such as in-tank heater, external heater, H_2 tubing. LH_2 and sLH_2 volume based on various inputs, including SAG White Paper, 2022.

- CcH₂ and Verne intro
- Usable density comparisons
- Verne progress and conclusion

Rapid development progress since 2022

Key upcoming milestones for Verne CcH₂ trucking

Class 8 truck demos with 2 OEMs

Two top 10 fleets planning subsequent pilots

2024 - 2026

First truck pilot: Multiple trucks, 2 fleets, >1 year

Full truck and refueling commercial operations in late 2026

VERN

Final takeaways

- 1. The metrics that matter include steady-state usable system densities:
 - CcH₂ enables 30% greater usable volumetric system density

2. Multiple CcH₂ tests have all been successfully completed

Verne has completed CcH₂ vehicle pilot and multiple tank system demo's

3. Verne is now working on integrations with Class 8 trucks

- Multiple fleets and OEMs for first pilots
- Results from early demos can help inform key stakeholders on H₂ rollout

A team of global experts

Leadership

A diesel-free future. Powered by Verne.

David Jaramillo CTO & Co-Founder david@verneh2.com

CcH₂ refueling from LH₂ requires minimal modification

CcH₂ refueling from LH₂ requires minimal modification

*ISO 197 WG 36 is currently focused on refueling connectors. The CcH₂ dispenser Work Item has not yet started

VERNE

Proprietary & Confidential

Magnitude improvement in dormancy unlocks use cases and low-cost system designs

