Energy-Efficient Catalysts For Green Ammonia Synthesis

Associate Professor Franck Natali CSO & Founder Director Liquium, New Zealand Breakthrough Energy Innovator Fellow School of Chemical and Physical Sciences Te Herenga Waka—Victoria University of Wellington

TUESDAY SEPTEMBER 28, Session 6: Energy sustainability | 1:30PM – 3:10PM

HEAVY INDUSTRY MANUFACTURING FROM 51 BILLION TONS PER YEAR TO ZERO

HEAVY INDUSTRY MANUFACTURING

Haber-Bosch process

"Of all the century's technological marvels, the Haber-Bosch process has made the most difference to our survival" Vaclav Smil

1920 – Teaspoon of ammonia per day

~2000 – >> 5000 tonnes of ammonia per day

AMMONIA SYNTHESIS

NH₃ is one of largest chemical processes (Haber-Bosh) on the planet

For every tonne of NH₃ produced, three tonnes of CO₂ are emitted

~ 1 billion tons of CO₂ per year

AMMONIA SYNTHESIS PROCESS CHALLENGES OF GREEN AMMONIA PRODUCTION

The Problem Our Solution Ammonia is hard to make!! A new catalyst platform for green ammonia VICTORIA UNIVERSITY OF liquium catalyst WELLINGTON HERENGA WAKA N₂ + 3H₂ 2NH₃ MacDiarmid Breakthrough Ammonia N Institute Energy **Industrial Haber Bosch Process Our Catalysts** Lower pressure (<100 Bar) Iron or ruthenium metals as catalysts Lower temperature (<400°C) High pressure (150-400 Bar) High temperature (400-600°C) Alignment with renewable energy

In My Presentation: Rate-limited step by N₂ breaking

AMMONIA PROCESS AT THE ATOMIC SCALE THE CATALYST: THE CHALLENGE

The Scientific Journey: a material that can break molecular nitrogen at mild temperature and pressure

НЕХ	C	ry	sta	al S	STP -	J Ct Stan	Ure Idard	9S Temp	of perat	Ele ure a	em nd Pr	en essur	ts :	at	ST	Ρ	Не				
Li	Be	BCC - FCC -	Body-cer Face-cer	ntered Cub Intered Cub	DiC DiC		BCT - I ORTH	Body-cent - Orthorh	ered Tetr ombic	agonal		В	С	N	0	F	Ne				
BCC	HCP	HEX -	Simple H Close-page	exagonal cked Hexa	adonal		DC - Di DT - Di	amond Cu amond Te	ubic tragonal			RHO	HEX	HCP	P-cubic	P-cubic	FCC				
Na BCC	Mg HCP	DHCP RHO -	- Double Rhombol	Close-pac nedral	ked Hexa	gonal	SC - Si * predic	mple Cub ted crysta	ic al structu	re		AI FCC	Si DC	P orth	S ORTH	CI complex C-ORTH	Ar FCC				
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Со	Ni	Cu	Zn		Ge	As	Se	Br	Kr				
Dh	Cr		7r	NIh	Mo		Du	Dh	Dd				<u>C</u> n	Ch			Vo				
BCC	FCC	HCP		BCC	BCC	HCP	HCP	FCC	FCC	FCC	HCP	BCT	DT				FCC				
Cs	Ba	57-71	Hf	Та	W	Re	Os	lr	Pt	Au	Hg	TI	Pb	Bi	Ρο	At	Rn		Lantha	anide Mat	e
BCC	BCC		HCP	BCC	BCC	HCP	HCP	FCC	FCC	FCC	RHO	HCP	FCC	RHO	SC	FCC*	FCC*		L		_
Fr	Ra	89-103	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn	Nh	FI	Мс	Lv	Ts	Og				
BCC*	BCC		HCP*	BCC*	BCC*	HCP*	HCP*	FCC*	BCC*	BCC*	HCP*	HCP*	FCC*	UNKNOWN	UNKNOWN	UNKNOWN	FCC*				
_						-	-				_	_		_							
So	olid state at	STP	La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	5			
Lie	iquid state a	atSTP	DHCP	DHC	DHCP	DHCP	DHCP	complex RHO	BCC	HCP	HCP	HCP	HCP	HCP	HCP	100	пср				
			Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr				
Ga	aseous sta	ate at STP	FCC	FCC	BCT	ORTH	ORTH	MONO	DHCP	DHCP	DHCP	DHCP	FCC	FCC*	FCC*	FCC*	HCP*				

AMMONIA SYNTHESIS THE JOURNEY: NH₃ CHEMISTRY WITH LANTHANIDE METAL

Catalytic activity of lanthanide atoms promoting the N_2 dissociation at room temperature & N_2 pressure <1 bar: growth of thin films in the presence of pure molecular N_2

XRD of thin films of lanthanides deposited in a nitrogen atmosphere.

F. Ullstad et al., Breaking Molecular Nitrogen under Mild Conditions with an Atomically Clean Lanthanide Surface, ACS Omega, 4, 5950–5954 (2019)

AMMONIA PROCESS AT THE ATOMIC SCALE FACILE DISSOCATION OF N, BY LANTHANIDE SURFACES

In-situ and real time monitoring of the nitridation of lanthanides - exptl results

> Steps by steps: Exposure of gadolinium layer to N₂ AND (3) Formation of gadolinium nitride layer

- (a) Exposure of the Gd surface to N_2 ; at ambient temperature and N_2 partial pressure of 3 x 10⁻⁵ mBar.
- (b) and (c) RHEED patterns of Gd before and after exposure to N₂.
- Streak spacing increases, indicating a contraction of the surface Gd lattice spacing; a_{GdN} = 3.53 Å.
- (d) full nitridation of the surface within 300 seconds; relatively fast process.

J. Chan et al., Epitaxial growth of gadolinium and samarium thin films and their subsequent facile nitridation at ambient temperatures, Applied Surface Science 632, 157550 (2023).

AMMONIA SYNTHESIS FACILE DISSOCATION OF N₂ BY LANTHANIDE SURFACES

Density functional theory study of N₂ dissociation on pure lanthanide surfaces

- Investigated a key step in ammonia formation N₂ dissociation
- Used DFT+U, which allows explicit description of *f* electrons, however, is a prohibitively slow method.
- Used DFT with "f in core" potentials no explicit description of f electrons, but much faster than DFT+U – gives acceptable description of adsorbates
- Stable adsorption geometries of N₂ on lanthanides markedly different from transition metals: a different mechanism, potentially involving partial absorption of N₂ into the surface.

Stephanie Lambie and Anna Garden (University of Otago)

 $N_{\mbox{\tiny q}}$ adsorbed onto stepped lanthanide surfaces

2 N adsorbed onto stepped lanthanide surfaces

Latoms – grey, Natoms – blue

J. Chan et al., Facile dissociation of molecular nitrogen using lanthanide surfaces: Towards ambient temperature ammonia synthesis, Phys. Rev. Materials 4, 115003 (2020).

AMMONIA SYNTHESIS TOWARDS AMBIENT TEMPERATURE AMMONIA SYNTHESIS

Gadolinium metal and its subsequent nitridation,

and its subsequent exposure to H₂.

4×10⁻⁷ GdN NH₃ partial pressure (mbar) Yb 3×10⁻⁷ 2×10⁻⁷ 1×10⁻⁷ 0 300 100 200 400 500 600 0 H_2 exposure time (s)

> Gadolinium metal – Cycling H_2 and N_2 .

Reproducibility of the cycling process

J. Chan et al., Facile dissociation of molecular nitrogen using lanthanide surfaces: Towards ambient temperature ammonia synthesis, Phys. Rev. Materials 4, 115003 (2020).

AMMONIA SYNTHESIS FACILE DISSOCATION OF N₂ BY LANTHANIDE SURFACES

Density functional theory study of N₂ dissociation on pure lanthanide surfaces

- Investigated a key step in ammonia formation N₂ dissociation
- Used DFT+U, which allows explicit description of *f* electrons, however, is a prohibitively slow method.
- Used DFT with "f in core" potentials no explicit description of f electrons, but much faster than DFT+U – gives acceptable description of adsorbates
- Stable adsorption geometries of N₂ on lanthanides markedly different from transition metals: a different mechanism, potentially involving partial absorption of N₂ into the surface.

Stephanie Lambie and Anna Garden (University of Otago)

 $N_{\mbox{\tiny q}}$ adsorbed onto stepped lanthanide surfaces

2 N adsorbed onto stepped lanthanide surfaces

Latoms – grey, Natoms – blue

J. Chan et al., Facile dissociation of molecular nitrogen using lanthanide surfaces: Towards ambient temperature ammonia synthesis, Phys. Rev. Materials 4, 115003 (2020).

AMMONIA SYNTHESIS WHAT'S NEXT

- NH₃ production at room temperature &low pressure demonstrated using thin films.
- Not appropriate for kinetic & thermodynamic studies and not industrially relevant!
 ⇒ Powders ⇒ Pellets
- Dedicated NH₃ synthesis reactor needed!

Spinout from Victoria University of Wellington

AMMONIA SYNTHESIS KINETICS STUDY: ACTIVATION ENERGY

A catalyst with lower apparent activation energy performs better at lower temperature!

P= 6 bar, Temperatures= 400°C, 380°C, 360°C, 340°C

Extended Data Table 2 Kineti	c parameters of selected	cat
Cataluat	Ea	
Catalyst	$(kJ \cdot mol^{-1})$	
Ni/LaN NPs	57.5	
Ni/LaN bulk	60.4	
Co ₃ Mo ₃ N	56	
Co/C12A7:e-	49.5	
Fe-cat. (KM1)	70	
LaRuSi	40.4	
Ru/Ba-Ca(NH2)2	59.4	
Cs-Ru/MgO	124.3	

T.-N. Ye, et al., Vacancy-enabled N₂ activation for ammonia synthesis on an Ni-loaded catalyst, Nature 583, 391 (2020).

Collaboration with Ass. Prof. Alex Yip, University of Canterbury

AMMONIA SYNTHESIS KINETICS STUDY: REACTION ORDERS

Reaction order for NH₃ synthesis reaction:

 $\mathsf{R}_{\mathsf{NH}_3} = k P_{N2}^{\alpha} P_{H2}^{\beta} P_{NH3}^{\gamma}$

Quantity of ammonia produced R_{NH3} during the reaction is measured for different partial pressures and temperatures.

N₂ order (α) \approx 0.90

Indicates dissociative nitrogen chemisorption is the main rate limiting step $H_2 \text{ order } (\beta) \approx 1.35$

No strong inhibition of the reaction due to hydrogen adsorption: No hydrogen poisoning NH_3 order (γ) \approx -1.33

Contribution from reverse reaction: NH₃ decomposition

Collaboration with Ass. Prof. Alex Yip, University of Canterbury

CONCLUSION

- Unique and strong fundamental knowledge in lanthanide materials catalyst development, laying the foundation for meaningful R&D decisions and actions as we are scaling up our chemical process.
- Synthesised >20 catalysts, with successive catalyst generations focusing successfully on improved airstability formulation and pelletised to an industrially relevant form factor.
- Kinetic studies allowing us to be uniquely positioned for making a timely and significant contribution in low-temperature and low-pressure ammonia synthesis.