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HEAVY INDUSTRY MANUFACTURING

FROM 51 BILLION TONS PER YEAR TO ZERO




HEAVY INDUSTRY MANUFACTURING

AMMONIA: SYNTHETIC FERTILISERS

Haber-Bosch process
“Of all the century's technological marvels, the Haber-Bosch process has made the most difference to our survival” Vaclav Smil

1920 — Teaspoon of ammonia per day ~2000 - >> 5000 tonnes of ammonia per day




AMMONIA SYNTHESIS

INTRODUCTION

NH; is one of largest

chemical processes

(Haber-Bosh) on the
planet

O

For every tonne of NH,
produced, three tonnes of
CO, are emitted

Ammonia: NH,

T

N, + H,

~ 1 billion tons of CO, per
year
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AMMONIA SYNTHESIS

PROCESS CHALLENGES OF GREEN AMMONIA PRODUCTION

Our Solution

new catalyst platform for green ammonia
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AMMONIA PROCESS AT THE ATOMIC SCALE

THE CATALYST: THE CHALLENGE

The Scientific Journey: a material that can break molecular nitrogen at mild temperature
and pressure
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AMMONIA SYNTHESIS

THE JOURNEY: NH; CHEMISTRY WITH LANTHANIDE METAL

Catalytic activity of lanthanide atoms promoting the N, XRD of thin films of lanthanides
dissociation at room temperature & N, pressure <1 bar: deposited in a nitrogen atmosphere.
growth of thin films in the presence of pure molecular N,
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F . Ullstad et al., Breaking Molecular Nitrogen under Mild Conditions with an Atomically Clean Lanthanide Surface, ACS Omega, 4, 5950-5954 (2019)



AMMONIA PROCESS AT THE ATOMIC SCALE

FACILE DISSOCATION OF N, BY LANTHANIDE SURFACES

In-situ and real time monitoring of the nitridation of lanthanides - exptl results

> Steps by steps: Exposure of gadolinium layer to N, AND (3) Formation of gadolinium nitride layer

m (a) Exposure of the Gd surface to N,; at ambient temperature and
N, partial pressure of 3 x 10> mBar.

Gd = GdN m (b) and (c) RHEED patterns of Gd before and after exposure to N,

(b) ‘ (©) ' m Streak spacing increases, indicating a contraction of the surface
Gd lattice spacing; acy, = 3.53 A.
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J. Chan et al., Epitaxial growth of gadolinium and samarium thin films and their subsequent facile nitridation at ambient temperatures, Applied Surface Science 632, 157550 (2023).
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AMMONIA SYNTHESIS

FACILE DISSOCATION OF N, BY LANTHANIDE SURFACES

Density functional theory study of N, dissociation on pure lanthanide surfaces

m Investigated a key step in ammonia formation — N, dissociation

m Used DFT+U, which allows explicit description of f electrons,
however, is a prohibitively slow method.

m Used DFT with “fin core” potentials — no explicit description of f
electrons, but much faster than DFT+U — gives acceptable
description of adsorbates

m Stable adsorption geometries of N, on lanthanides markedly
different from transition metals: a different mechanism,
potentially involving partial absorption of N, into the surface.

Stephanie Lambie and Anna Garden (University of Otago)
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N, adsorbed onto stepped lanthanide surfaces

2 N adsorbed onto stepped lanthanide surfaces

L atoms — grey, N atoms — blue

J. Chan et al., Facile dissociation of molecular nitrogen using lanthanide surfaces: Towards ambient temperature ammonia synthesis, Phys. Rev. Materials 4, 115003 (2020).



AMMONIA SYNTHESIS

TOWARDS AMBIENT TEMPERATURE AMMONIA SYNTHESIS

> Gadolinium metal and its subsequent nitridation,
and its subsequent exposure to H,.

> Gadolinium metal — Cycling H, and N..

Partial pressure of ammonia is detected Reproducibility of the cycling process
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J. Chan et al., Facile dissociation of molecular nitrogen using lanthanide surfaces: Towards ambient temperature ammonia synthesis, Phys. Rev. Materials 4, 115003 (2020).




AMMONIA SYNTHESIS

FACILE DISSOCATION OF N, BY LANTHANIDE SURFACES

Density functional theory study of N, dissociation on pure lanthanide surfaces
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m Used DFT+U, which allows explicit description of f electrons,
however, is a prohibitively slow method.

m Used DFT with “fin core” potentials — no explicit description of f
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description of adsorbates

m Stable adsorption geometries of N, on lanthanides markedly
different from transition metals: a different mechanism,
potentially involving partial absorption of N, into the surface.
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J. Chan et al., Facile dissociation of molecular nitrogen using lanthanide surfaces: Towards ambient temperature ammonia synthesis, Phys. Rev. Materials 4, 115003 (2020).



AMMONIA SYNTHESIS

WHAT’S NEXT

» NH; production at room temperature &low
pressure demonstrated using thin films.

» Not appropriate for kinetic & thermodynamic
studies and not industrially relevant!
— Powders = Pellets

» Dedicated NH; synthesis reactor needed!

Spinout from Victoria University of Wellington




AMMONIA SYNTHESIS

KINETICS STUDY: ACTIVATION ENERGY

A catalyst with lower apparent activation energy performs better at lower temperature!
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P= 6 bar, Temperatures= 4002C, 3802C, 3602C, 3402C

Collaboration with Ass. Prof. Alex Yip, University of Canterbury
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Article

Extanded Data Table 2 | Kinetic parameters of selected catalysts

FEa
Catalyst

(kJ-mol ")

Ni/LaN NPs 57.5
Ni/LaN bulk 60,4
CosMo:zN 56
Co/CI12A7:¢ 49.5
Fe-cat. (KM1) 70
LaRuSi 40.4
Euw'Ba-Ca(MHz): 594

Cs-Ru/MgO 1243

T.-N. Ye, et al., Vacancy-enabled N, activation for ammonia
synthesis on an Ni-loaded catalyst, Nature 583, 391 (2020).



AMMONIA SYNTHESIS

KINETICS STUDY: REACTION ORDERS

Reaction order for NH; synthesis reaction:

RNH3 = kpﬁz B PNH3
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Quantity of ammonia produced Rnw; during the reaction is measured for different partial pressures and temperatures.
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CONCLUSION

» Unique and strong fundamental knowledge in lanthanide materials catalyst development, laying the
foundation for meaningful R&D decisions and actions as we are scaling up our chemical process.

» Synthesised >20 catalysts, with successive catalyst generations focusing successfully on improved air-
stability formulation and pelletised to an industrially relevant form factor.

» Kinetic studies allowing us to be uniquely positioned for making a timely and significant contribution in
low-temperature and low-pressure ammonia synthesis.
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