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THE FIVE CLIMATE GRAND CHALLENGES

FROM 51 BILLION TONS PER YEAR TO ZERO
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HEAVY INDUSTRY MANUFACTURING

LIFECYCLE OF CLIMATE-TECHNOLOGY
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FROM 51 BILLION TONS PER YEAR TO ZERO

FIRST EXAMPLE: CEMENT
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CEMENT

Cement is responsible for about 7% of greenhouse gas emissions.
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Prepared by R. W. Dell (rebecca.dell@climateworks.org) Sources: EDGAR (2019), IEA (2019)
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CEMENT

That’s because we use an astonishing amount of it!

w

Cement Production (Gt/y)
no

++ Cement: 4 billion tons per year

550 kg per person per year

- Concrete: 25-30 billion tons per year
3500 kg per person per year

Rest of World
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CEMENT

Producing cement emits nearly 1 ton CO, for each ton of cement!

CO5 Emissions
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Electricity

CaCOQOsz + heat =& CaO + CO»

CaCO, =calcium carbonate (Limestone) Ca0 = calcium oxide (Cement)
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CEMENT

Cement is extremely cheap!
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FROM 51 BILLION TONS PER YEAR TO ZERO

SECOND EXAMPLE: AMMONIA
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AMMONIA=FERTILISERS
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BEFORE AMMONIA BASED FERTILISERS: GUANO

More Precious than Gold: The Story of the Peruvian Guano Trade
by David Hollett
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ITS USH SECURES TO THE FARMER A

LARGE AND REMUNERATIVE CROP,

And has been found to pay better than any other investment. /=

FOR PARTICULARS CALL ON-
‘e

Ai ~1840-1880: Seabird excrement imported from Chincha Islands
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BEFORE AMMONIA-BASED FERTILISERS: LIMITED NATURAL RESSOURCES

“My chief subject is of interest to the whole world - to every race, to every
human being. It is of urgent importance to-day, and it is a life- and -
death question for generations to come. | mean the question of food
supply. Many of my statements you may think are of the alarmist order;
certainly they are depressing, but they are founded on stubborn facts.
They show that England and all civilized nations stand in deadly peril of
not having enough to eat. As mouths multiply, food resources dwindle.
Land is a limited quantity, and the land that will grow wheat is absolutely
dependent on difficult and capricious natural phenomena”

Sir William Crookes, Bristol, 1898.

President of the British Academy of Sciences
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AMMONIA: SYNTHETIC FERTILISERS

Haber-Bosch: ammonia production process (1920-1930)
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AMMONIA: SYNTHETIC FERTILISERS

Haber-Bosch process
“Of all the century's technological marvels, the Haber-Bosch process has made the most difference to our survival” Vaclav Smil

~1920 - Tea spoon of ammonia per day ~2000 - >> 5000 tonnes of ammonia per day
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AMMONIA: SYNTHETIC FERTILISERS

World population with and without synthetic nitrogen fertilizers
Estimates of the global population reliant on synthetic nitrogenous fertilizers, produced via the Haber-Bosch
process for food production. Best estimates project that just over half of the global population could be sustained
without reactive nitrogen fertilizer derived from the Haber-Bosch process.

World population

7 billion
& billion
5 billion
4 billion World population supported without
synthetic fertilizer
World population fed by synthetic
fertilizer
3 hillion
2 billion
1 billion
0 . ) ! ! : .
1900 1920 1240 1960 1280 2000 2015

Source: Erisman et al. (2008); Smil (2002); Stewart (2005) .

IMajor types of nitrogen-based fertiliser with % nitrogen content:

e Urea (46%), anhydrous ammonia (82%), ammonium
nitrate (34%), ammonium sulfate (21%), nitrogen
solutions (30%), diammonium phosphate (18%).

* Choice is function of cost and equipment available.

*  Most common globally is urea.

*  Manure (~“1% N). Poultry manure has highest N content

If crop yields would have stayed at 1900 levels, we’d need 10x
more land for agriculture than we use today
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AMMONIA: SYNTHETIC FERTILISERS

Monthly prices of Urea fertilizer worldwide from January 2017 to December 2022
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AMMONIA PRODUCTION

NH; is one of largest
chemical processes
(Haber-Bosch) on
the planet

O

For every tonne of NH,
produced, three tonnes of
CO, are emitted

Ammonia: NH,

T

N, + H,

~ 1 billion tons of CO, per
year
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THE GREEN AMMONIA CHALLENGE

Nitrogen From Air
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Hydrogen from Water
(Renewable energy electrolysis)

NEED Lower temperature

Lower pressure synthesis

New Process

&
S

Catalyst developments

Breaking the N-N bond is very difficult

Haber-Bosch Process Needs:
* |ron or ruthenium catalyst
e T=400-450 °C
e P =200-300 atm

Much interest in developing
new catalysts to avoid these
harsh conditions



AMMONIA PROCESS AT THE ATOMIC SCALE

THE CATALYST: THE CHALLENGE

Iron catalysts Role Catalysts
Alternative pathway for the reaction to follow that has that lower
activation energy; easier and faster for the reactants (H, & N,) to
form the product (NH,).

No catalyst
- With catalyst

Reactants

Energy

Products

Reaction Coordinate




AMMONIA PROCESS AT THE ATOMIC SCALE

THE CATALYST: THE CHALLENGE

The Scientific Journey: Find (= fabricate) a material (=catalyst) that can break
(=dissociate) molecular nitrogen at mild temperature and pressure




AMMONIA PROCESS AT THE ATOMIC SCALE

THE CATALYST: THE CHALLENGE

The Scientific Journey: Find (= fabricate) a material (=catalyst) that can break
(=dissociate) molecular nitrogen at mild temperature and pressure
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AMMONIA PROCESS AT THE ATOMIC SCALE

FACILE DISSOCATION OF N, BY LANTHANIDE SURFACES

In-situ and real time monitoring of the nitridation of lanthanides - exptl results

> Steps by steps: (2) Exposure to N, AND (3) Formation of Gadolinium Nitride surface layer

m (a) Exposure of the Gd surface to N,; at ambient temperature
and N, partial pressure of 3 x 10> mBar.

Gd = GdN
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FACILE DISSOCATION OF N, BY LANTHANIDE SURFACES

In-situ and real time monitoring of the nitridation of lanthanides - exptl results

> Steps by steps: (2) Exposure to N, AND (3) Formation of Gadolinium Nitride surface layer

m (a) Exposure of the Gd surface to N,; at ambient temperature
and N, partial pressure of 3 x 10> mBar.

Gd = GdN m (b) and (c) RHEED patterns of Gd before (a) and after
(b) ‘ (c) ' (c) exposure to N,.
; Streak spacing increases, indicating a contraction of the surface
Gd lattice spacing; agyy, = 3.53 A.
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FACILE DISSOCATION OF N, BY LANTHANIDE SURFACES

In-situ and real time monitoring of the nitridation of lanthanides - exptl results

> Steps by steps: (2) Exposure to N, AND (3) Formation of Gadolinium Nitride surface layer

m (a) Exposure of the Gd surface to N,; at ambient temperature
and N, partial pressure of 3 x 10> mBar.

m (b) and (c) RHEED patterns of Gd before (a) and after
(c) exposure to N,.
; Streak spacing increases, indicating a contraction of the surface
Gd lattice spacing; acyy, = 3.53 A.
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AMMONIA PROCESS AT THE ATOMIC SCALE

TUAKANA-TEINA
SUPPORTING & GROWING PHD STUDENTS & SUPERVISORS

1 It’s been really interesting to work on a project that has real-world application, and to see first-
hand how commercialising research can get it out of the lab and into the hands of others where it
can make a difference. )

JAY CHAN, PHD STUDENT (2014-2018) — Funded Royal Society of New Zealand (Marsden Grant)
Electron diffraction Software Licensed to US-based Company (>X00,00NZD - 2021)
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TOWARDS AMBIENT TEMPERATURE AMMONIA SYNTHESIS

Ammonia Synthesis — exptl results

PHYSICAL REVIEW MATERIALS 4, 115003 (2020)

Facile dissociation of molecular nitrogen using lanthanide surfaces:
Towards ambient temperature ammonia synthesis

J.R. Chan®.* S. G. Lambie ®.2 H. J. Trodahl®.! D. Lefebvre.! M. Le Ster.® A. Shaib®.! F. Ullstad.! S. A. Brown®.?
B.J. Ruck.! A. L. Garden®.? and F. Natali®!-*
'The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Chemical and Physical Sciences,
Victoria University of Wellington, PO Box 600, Wellington, New Zealand
2The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Otago, P.O. Box 56,
Dunedin 9054, New Zealand
3The MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences,
University of Canterbury, Private Bag 4800, Christchurch 8140, New Zealand

M (Received 7 May 2020 revised 22 September 2020; accepted 29 October 2020: published 30 November 2020)

A combined experimental and computational study is reported on a hitherto unrecognised single lanthanide
catalyst for the breaking of molecular nitrogen and formation of ammonia at ambient temperature and low
pressure. We combine in sifu electrical concluct*mce and e]ectron cllffr.luhon measurements to track the conver-
sion from the lanthanide metals to 1e efficiency of the conversion is then
+U calculations, suggesting a molecular nitrogen dissociation pathway n that
well esmbllshed for transition metals. Finally, we show that exposure of the lanthanide surfaces to both molecula
nitrogen and hydrogen results in the formation of ammonia.
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THE JOURNEY
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- What makes an industrially
~ relevant catalyst?

Ligquium



Materials showcase

Ligquium



Team showcase

» 5 Graduate Students from Victoria University of Wellington,

» 1 Graduate Student from University of Canterbury, Paul
Geraghty (Liquium’s CEOQ),

» Pipeline for graduate students,

» Populating the deep tech sector.

Ligquium



INNOVATION & IMPACT POTENTIAL

MARKET AND END USERS

................... @@ Chemical
N
@ Agriculture
2050

Current demand

2021

150-180M >3x 470M tonnes/year % Electricity market
tonnes/year

Maritime Fuel Future demand

.................... O Hydrogen
./ Economy




INNOVATION & IMPACT POTENTIAL

MARKET AND END USERS
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World's First Ammonia-fuel Ready Vessel Delivered

MarineLink February 7, 2022

Chinese shipyard New Times Shipbuilding has delivered what
is said to be the first ammonia-fuel ready vessel in the world.

The newly built Kriti Future, recently handed over to owner
Avin International, is a 274-meter-long, 156,500 DWT
Suezmax tanker classed by ABS and flying the Greek flag.

The ship is currently conventionally fueled but complies with
z the ABS Ammonia Ready Level 1 requirements, indicating it is
Proposed design of the vessel

Image credit: Nihon Shipyard

designed to be converted to run on ammonia in the future.
The vessel also meets the ABS LNG Fuel Ready Level 1
requirements.
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